Pembahasan Fungsi Komposisi Dan Fungsi Invers
Fungsi Komposisi dan Fungsi Invers - Pada artikel kali ini materi yang akan dipelajari ialah perihal fungsi komposisi dan fungsi invers. Materi ini termasuk ke dalam salah satu pokok bahasan yang ada di dalam mata pelajaran matematika di Sekolah Menengah Atas (SMA). Ada baiknya sebelum mempelajari materi ini kalian terlebih dahulu memahami Teori, Konsep dan Jenis Himpunan Matematika. Fungsi atau pemetaan termasuk ke dalam korelasi sebab di dalam sebah fungsi dari himpunan A ke himpunan B terdapat korelasi khusus yang memasangkan tiaptiap anggota yang ada pada himpunan A dengan tiap-tiap anggota pada himpunan B. Untuk sanggup menuntaskan soal-soal mengenai fungsi komosisi dan invers tentu kita harus memahami dengan baik konsep ataupun prinsip dasar dari fungsi komposisi dan fungsi invers.
Rumus Matematika Dasar mencoba merangkum materi ini dari banyak sekali sumber menyerupai sanggup kalian simak di bawah ini:
Pengertian Fungsi Komposisi dan Fungsi Invers
Fungsi Komposisi
Dari dua jenis fungsi f(x) dan g(x) kita sanggup membentuk sebuah fungsi gres dengan memakai sistem operasi komposisi. operasi komposisi biasa dilambangkan dengan "o" (komposisi/bundaran). fungsi gres yang sanggup kita bentuk dari f(x) dan g(x) adalah:
(g o f)(x) artinya f dimasukkan ke g
(f o g)(x) artinya g dimasukkan ke f
Contoh Soal 1:
Diketahui f(x) = 3x - 4 dan g(x) = 2x, maka tentukanlah rumus (f o g)(x) dan (g o f)(x) ...
Jawab:
(f o g)(x) = g dimasukkan ke f menggantikan x
(f o g)(x) = 3(2x)-4
(f o g)(x) = 6x - 4
(g o f)(x) = f dimasukkan ke g menggantikan x
(g o f)(x) = 2(3x-4)
(g o f)(x) = 6x-8
Syarat Fungsi Komposisi
Contoh Soal 2
Misal fungsi f dan g dinyatakan dalam pasangan terurut :
f : {(-1,4), (1,6), (3,3), (5,5)}
g : {(4,5), (5,1), (6,-1), (7,3)}
Tentukan :
a. f o g d. (f o g) (2)
b. g o f e. (g o f) (1)
c. (f o g) (4) f. (g o f) (4)
Jawab :
Pasangan terurut dari fungsi f dan g sanggup digambarkan dengan diagram panah berikut ini
a. (f o g) = {(4,5), (5,6), (6,4), (7,3)}
b. (g o f) = {(-1,5), (1,-1), (3,3), (5,1)}
c. (f o g) (4) = 5
d. (f o g) (2) tidak didefinisikan
e. (g o f) (1) = -1
Sifat-sifat Fungsi Komposisi
Fungsi komposisi mempunyai beberapa sifat, diantaranya:
Tidak Komutatif
(g o f)(x) = (f o g)(x)
Asosiatif
(f o (g o h))(x) = ((f o g) o h)(x)]
Fungsi Identitas I(x) = x
(f o I)(x) = (I o f)(x) = f(x)
Cara Menentukan fungsi bila fungsi komposisi dan fungsi yang lain diketahui
Misalkan jikalau fungsi f dan fungsi komposisi (f o g) atau (g o f) telah diketahui maka kita sanggup memilih fungsi g. demikian juga sebaliknya.
Contoh Soal 3
Misal fungsi komposisi (f o g) (x) = -4x + 4 dan f (x) = 2x + 2.
Tentukan fungsi g (x).
Jawab :
(f o g) (x) = -4x + 4
f (g (x)) = -4x + 4
2 (g (x)) + 2 = -4x + 4
2 g (x) = -4x + 2
g (x) = -4x + 2
2
g (x) = -2x + 1
Makara fungsi g (x) = -2x + 1
Fungsi Invers
Apabila fungsi dari himpunan A ke B dinyatakan dengan f, maka invers dari fungsi f merupakan sebuah korelasi dari himpunan A ke B. Sehingga, fungsi invers dari f : A -> B ialah f-1: B -> A. sanggup disimpulkan bahwa kawasan hasil dari f-1 (x) merupakan kawasan asal bagi f(x) begitupun sebaliknya.
Cara menenukan fungsi invers bila fungsi f(x) telah diketahui:
Pertama
Ubah persamaan y = f (x) menjadi bentuk x sebagai fungsi dari y
Kedua
Hasil perubahan bentuk x sebagai fungsi y itu dinamakan sebagai f-1(y)
Ketiga
Ubah y menjadi x [f-1(y) menjadi f-1(x)]
Contoh Soal: